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Abstract. We study the acoustic-phonon spectra in periodic and quasiperiodic (Fibonacci type) superlat-
tices made up from III–V nitride materials (GaN) intercalated by sapphire (Al2O3). Due to the misalign-
ments between the sapphire and the GaN layers that can lead to threading dislocation densities as high as
108−1010 cm−1, and a significant lattice mismatch (∼14%), the phonon dynamics is described beyond the
continuum elastic model using coupled elastic and electromagnetic equations, stressing the importance of
the piezoelectric polarization field in a strained condition. We use a transfer-matrix treatment to simplify
the algebra, which would be otherwise quite complicated, allowing a neat analytical expressions for the
phonon dispersion relation. Furthermore, a quantitative analysis of the localization and magnitude of the
allowed band widths in the phonon’s spectra, as well as their scale law and the parametric spectrum of
singularities f(α), are presented and discussed.

PACS. 63.20.Pw Localized modes – 63.22.+m Phonons or vibrational states in low-dimensional structures
and nanoscale materials – 68.65.Cd Superlattices – 71.55.Eq III-V semiconductors

1 Introduction

The III–V nitride materials, such as GaN, display impor-
tant piezoelectric polarization fields in a strained condi-
tion and can crystallize in both hexagonal wurtzite or cu-
bic zinc-blend structures [1]. The wurtzite crystals have
a different unit cell structure (four atoms per unit cell
with nine optical and three acoustic phonons for a given
wavevector), as well as a lower symmetry when com-
pared to the cubic zinc-blende counterpart, leading to a
different carrier-phonon interaction. Although significant
advances in growth, doping, and device applications of
group III–V nitride materials have been achieved with
their stable wurtzite hexagonal phase, less progress has
been made with their metastable zinc-blend cubic struc-
ture. However, devices with a zinc-blend structure would
have considerable advantages. This is particularly true for
GaN due to its higher saturated electron drift velocity,
easy cleavage, and lower band energy [2,3]. Also cubic ni-
trides are expected to have higher mobility, due to the
decrease of the phonon number for the higher symme-
try structure. Therefore, information on the vibrational
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properties of both structures (hexagonal and cubic) are
strongly desirable.

The hexagonal wurtzite structures are uniaxial crys-
tals with the optical axis coinciding with the Cartesian
z-axis, which is perpendicular to the hexagons (forming
the xy-plane). On the contrary to their hexagonal counter-
parts, the cubic structures can be grown free from modu-
lation due to spontaneous polarization and strain-induced
piezoelectric fields. The spatial separation of the carriers
wave function, induced by the quantum-confined Stark ef-
fect in the hexagonal phase, is avoided in the cubic struc-
ture [4].

On the other hand, the discovery of quasiperiodic
structures has fired up a new field of condensed-matter
physics and given rise to many practical application (for
an up to date review of this field see Refs. [5,6]). For exam-
ple, the multiwavelength second-harmonic generation [7]
and the direct third-harmonic generation [8] have been
realized in a Fibonacci superlattice. In the field of pho-
tonic crystals, the complete photonic band gap in 12-fold
symmetric quasicrystals has been recently reported [9].

It is our aim in this work to investigate the acoustic-
phonon spectra in multilayer structures composed of
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hexagonal and cubic GaN layers, intercalated by an in-
sulator material (Al2O3-sapphire), arranged in a periodi-
cal and quasiperiodic Fibonacci type fashion. It has been
shown that in GaN films on sapphire substrates the mis-
alignments between the sapphire base and the GaN lay-
ers can lead to threading dislocation densities as high as
108–1010 cm−2 [10], as well as a significant lattice mis-
match (∼14%) [11], leading to the appearance of a strain-
induced or piezoelectric polarization δ �P [12,13], given by

δPi = eijksjk (1)

besides the spontaneous polarization in the equilib-
rium superlattice structure. Here repeated subscript are
summed over, ijk can be any Cartesian x, y, or z axis,
eijk is the third rank piezoelectric tensor, and skl, the
strain tensor, is defined by:

sjk = (1/2)
(

∂uj

∂rk
+

∂uk

∂rj

)
, (2)

uk being the displacement along the coordinate axes rk.
Therefore the presence of this piezoelectric polariza-

tion component arising due to the lattice mismatch be-
tween GaN and sapphire, prevent us to use the much sim-
pler continuum equation

ρ∂2ui/∂t2 = ∂Sij/∂rj , (3)

as in previous work [14], to describe the acoustic phonon
dynamics. Instead, we should take into account the
piezoelectric polarization field, whose elastic equation is
coupled to the electromagnetic one (see next section). Pre-
vious work in this subject have considered transverse elas-
tic waves in periodic [17,18] and quasiperiodic Fibonacci
superlattice [15], considering layers of hexagonal sym-
metry and using the surface Green function matching
method [16]. In equation (3), ρ is the density of the
material (GaN), and Sij is the stress tensor, given by
Sij = Cijklskl, where Cijkl is the 4th-order elastic tensor.
We consider also a transfer-matrix treatment to simplify
the algebra, which would be otherwise quite complicated,
that allows one to obtain a neat analytical expressions for
the phonon dispersion relation. Furthermore, we perform
also a quantitative analysis of the localization and magni-
tude of the allowed band widths in the acoustic phonon’s
spectra, their scale law and the parametric spectrum of
singularities f(α).

The plan of this work is as follows: we start in Section 2
with our theoretical model along with some physical pa-
rameters definitions. The acoustic-phonon spectra for the
periodic and quasiperiodic structures considered in this
work are presented in Section 3. Further, in Section 4,
we present their localization profiles and the connection
with a fractal behavior through the scaling law of their
bandwidth spectra as well as some concluding remarks.

2 General theory

We now present our theory to study the vibration
modes in superlattices composed of zinc-blende (cu-

bic) and wurtzite (hexagonal) GaN intercalated by sap-
phire, forming a binary superlattice structure, namely,
/Al2O3/GaN/· · · /substrate, where the substrate is here
considered to be a transparent dielectric medium like vac-
uum.

Let us consider first the nitride layer GaN. The piezo-
electric term responsible for the coupled elastic and elec-
tromagnetic fields is usually weak enough to allow the
hybrid wave solution to behave like a quasielastic mode,
with a phase velocity slightly lower than the uncoupled
elastic mode, and a quasielectromagnetic mode, with a
phase velocity shifted to a slightly higher value than the
electromagnetic wave. As the electromagnetic wave has
a velocity approximately five orders of magnitude higher
than the elastic wave, we can describe the former in the
static field approximation in which the particle displace-
ment uj (j = x, y, z) along the coordinate axes rj is cou-
pled, through the piezoelectric tensor eijk, to the electrical
potential φ by the following set of equations [19]:

ρ
∂2uj

∂t2
− Cijkl

∂2uk

∂ri∂rl
− ekij

∂2φ

∂ri∂rk
= 0, (4)

eikl
∂2uk

∂ri∂rl
− εik

∂2φ

∂ri∂rk
= 0, (5)

where i, j, k and l can be x, y, or z with repeated sub-
script summed over. Also, εik is the second rank dielectric
permittivity tensor defined by:

ε(ω) =

⎛
⎝ εxx 0 0

0 εxx 0
0 0 εzz

⎞
⎠ . (6)

Here εxx and εzz are the dielectric functions perpendicular
and parallel to the z-axis, respectively. They are given by
(neglecting any damping effect):

εxx = ε∞
ω2 − ω2

LO,E1

ω2 − ω2
TO,E1

(7)

εzz = ε∞
ω2 − ω2

LO,A1

ω2 − ω2
TO,A1

, (8)

where ε∞ is the high-frequency dielectric constant, and
ωTO,X (ωLO,X) is the transverse optical (longitudinal op-
tical) phonon angular frequency for the mode X , for each
crystalline structure (cubic and hexagonal). Here X means
either the irreducible representation of A1(z) (z-axis) or
E1(xy) (xy-plane) at the Γ point.

Assuming that the hybrid wave is propagating in the
x-direction with a phase velocity equal to ω/vx, the solu-
tions of equations (4) and (5) can be cast into the forms:

uj = αj exp (ikz) exp (iqxx − iωt), j = x, y, z (9)
φ = α4 exp (ikz) exp (iqxx − iωt), (10)

where the α’s coefficients are the amplitudes of the dif-
ferent components. Substitution of the solutions of equa-
tions (9) and (10) into the coupled equations (4) and (5)
yields coupled differential equations for the pairs (ux, uz)
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and (uy, φ) for both symmetries (cubic and hexagonal),
where in the latter the coupling is due to the piezoelectric
tensor.

For the zinc-blende (cubic) structure, taking into ac-
count the appropriate form of the elastic and piezoelectric
tensor [20], and considering only the piezoelectric case of
interest to us, i.e. the pair (uy, φ), these equations are re-
duced to:

−ρω2uy − C44

(
∂2uy

∂z2
+

∂2uy

∂x2

)
− 2ex4

∂2φ

∂x∂z
= 0 (11)

2ex4
∂2uy

∂x∂z
− εxx

(
∂2φ

∂z2
+

∂2φ

∂x2

)
= 0,(12)

where C44 and ex4 are the components of the elastic and
piezoelectric tensors, respectively (from now on we will
use the short notation CIJ and eiJ for simplicity). Solving
these coupled equations we obtain (omitting the common
exp(iqxx) factor):

uy = L(k1)
[
B1 exp (ik1z) − B2 exp (−ik1z)

]

+ (εxx/ex4)L(k2)
[
B3 exp (ik2z) − B4 exp (−ik2z)

]
, (13)

φ = (ex4/εxx)
[
B1 exp (ik1z) + B2 exp (−ik1z)

]

+
[
B3 exp (ik2z) + B4 exp (−ik2z)

]
. (14)

Here Br (r = 1, 2, 3, 4) are unknowns coefficients to be
determined through the boundary conditions, and k1,2 =
(k+,−)1/2, where

k2
± =

[
q2
Tz − q2

x(1 + 4p) ± ∆
]/

2. (15)

Also,

∆ =
[(

q2
Tz + q2

x

)2

+ 8q2
xp

(
2q2

xp − q2
Tz + q2

x

)]1/2

,

(16)

q2
Tz =

(
ω/vT

)2

− q2
x, (17)

L(k) = k
[
k2 + q2

x(1 + 4p)
]/(

2qxq2
Tz

)
. (18)

In the above equations, p = e2
x4/εxxC44, qTz (qx) is the

z- (x-)component of the transverse wavevector of the
elastic wave, whose transverse velocity vT is given by
vT = (C44/ρ)1/2. Observe that when the piezoelectric
coupling is zero (p = 0), equation (15) yields the limits
k2
+ = q2

Tz and k2
− = q2

x, as it should be.
On the other hand, for the wurtzite (hexagonal) sym-

metry one finds:

−ρω2uy − C44

(
∂2uy

∂z2
+

∂2uy

∂x2

)
− ex5

(
∂2φ

∂z2
+

∂2φ

∂x2

)
= 0

(19)

ex5

(
∂2uy

∂z2
+

∂2uy

∂x2

)
− εxx

(
∂2φ

∂z2
+

∂2φ

∂x2

)
= 0,

(20)

whose solutions are:

uy =
[
B′

1 exp (ikz) + B′
2 exp (−ikz)

]
exp(iqxx),

φ =
{
(ex5/εxx)

[
B′

1 exp (ikz) + B′
2 exp (−ikz)

]
(21)

+ B′
3 exp (qxz) + B′

4 exp (−qxz)]
}

exp(iqxx), (22)

with k given by

k2 =
(
q2
Tz − p′q2

x

)/
(1 − p′), (23)

and p′ = e2
x5/εxxC44.

Furthermore, considering in the sapphire layer that
there is no coupling between the electromagnetic and the
elastic waves, we have

uy =
[
A1 exp (iqTzz) + A2 exp (−iqTzz)

]
exp(iqxx),

(24)

φ =
[
A3 exp (−qxz) + A4 exp (qxz)

]
exp(iqxx). (25)

In the next section we will use the expressions found for
the elastic displacement uy and the electrical potential φ
to determine the phonons’s dispersion relation using a
suitable transfer-matrix approach.

3 Periodic and quasiperiodic superlattices

Now we turn to the binary superlattice /Al2O3/GaN/· · ·
/vacuum, considering first GaN with a cubic zinc-blende
crystalline structure. The unit cell of the superlattice has
thickness L = da +db, where da (db) is the thickness of the
sapphire (GaN) layer. For the superlattice bulk modes,
the coupled field equations, defined by equations (11)
and (12), together with the elastic and electromagnetic
boundary conditions at the nth unit cell, i.e., the inter-
faces z = nL + da (Al2O3/GaN) and z = (n + 1)L (GaN
/Al2O3), yield:
(a) by imposing continuity of the transverse displacement

uy:

A
(n)
1 fa + A

(n)
2 f̄a = L(k1)

[
B

(n)
1 − B

(n)
2

]

+ p−1
2 L(k2)

[
B

(n)
3 − B

(n)
4

]
(26)

A
(n+1)
1 + A

(n+1)
2 = L(k1)

[
B

(n)
1 fb1 − B

(n)
2 f̄b1

]

+ p−1
2 L(k2)

[
B

(n)
3 fb2 − B

(n)
4 f̄b2

]
;

(27)

(b) by imposing continuity of the electrical potential φ:

A
(n)
3 fx + A

(n)
4 f̄x = p2

[
B

(n)
1 + B

(n)
2

]
+ B

(n)
3 + B

(n)
4 ,

(28)

A
(n+1)
3 + A

(n+1)
4 = p1

[
B

(n)
1 fb1 − B

(n)
2 f̄b1

]

+ B
(n)
3 fb2 + B

(n)
4 f̄b2; (29)
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N1 =

⎛
⎜⎜⎝

L(k1) −L(k1) L(k2)/p2 −L(k2)/p2

k1L(k1) k1L(k1) k2L(k2)/p2 −k2L(k2)/p2

p2 p2 1 1
−iεxxk1p2/εsqx iεxxk1p2/εsqx −iεxxk2/εsqx iεxxk2/εsqx

⎞
⎟⎟⎠ . (44)

(c) by imposing continuity of the transverse stress ten-
sor S32:

qTzµ
[
A

(n)
1 fa − A

(n)
2 f̄a

]
− qxp1

[
A

(n)
3 fx + A

(n)
4 f̄x

]
=

L(k1)k1

[
B

(n)
1 + B

(n)
2

]
+ p−1

2 L(k2)k2

[
B

(n)
3 + B

(n)
4

]
(30)

qTzµ
[
A

(n+1)
1 − A

(n+1)
2

]
− qxp1

[
A

(n+1)
3 + A

(n+1)
4

]
=

L(k1)k1

[
B

(n)
1 fb1 + B

(n)
2 f̄b1

]
+ p−1

2 L(k2)k2

×
[
B

(n)
3 fb2 + B

(n)
4 f̄b2

]
; (31)

(d) by imposing continuity of the normal component of the
electrical displacement Dz:

A
(n)
3 fx−A

(n)
4 f̄x =−

(
iεs/qxεxx

)[
p2k1

(
B

(n)
1 −B

(n)
2

)

+ k2

(
B

(n)
3 − B

(n)
4

)]
(32)

A
(n+1)
3 − A

(n+1)
4 = −

(
iεs/qxεxx

)

×
[
p2k1

(
B

(n)
1 fb1 − B

(n)
2 f̄b1

)

+ k2

(
B

(n)
3 fb2 − B

(n)
4 f̄b1

)]
, (33)

where εs is sapphire’s dielectric constant. In the above
equations we have used the following definitions:

fm = exp (iqTzdm) = 1/f̄m, m = a, b (34)

fx = exp (−qxda) = 1/f̄x (35)

fbr = exp (ikrdb) = 1/f̄br, r = 1, 2 (36)
p1 = ex4/C44(GaN) (37)

p2 = ex4/εs (38)
µ = C44(GaN)/C44(sapphire). (39)

Defining the kets formed by the unknowns coefficients

|A(n)〉 =

⎛
⎜⎜⎜⎜⎝

A
(n)
1

A
(n)
2

A
(n)
3

A
(n)
4

⎞
⎟⎟⎟⎟⎠ , (40)

with similar expression for |B(n)〉, equations (26) to (33)
can be expressed as the matrices equations

M1|A(n)〉 = N1|B(n)〉 (41)

M2|A(n+1)〉 = N2|B(n)〉, (42)

where

M1 =

⎛
⎜⎜⎝

fa f̄a 0 0
qTzµfa −qTzµf̄a −qxp1fx −qxp1f̄x

0 0 fx f̄x

0 0 fx −f̄x

⎞
⎟⎟⎠ , (43)

and

see equation (44) above.

The matrix M2 is obtained from M1 by dividing the first
row by fa, the second by f̄a, the third by fx, and the
fourth by f̄x. Similarly, we can obtain the matrix N2 from
N1 by multiplying the first row by fb1, the second by f̄b1,
the third by fb2, and the fourth by f̄b2.

In a similar way we can carry out the case where GaN
has a hexagonal wurtzite crystalline structure. The re-
sults are similar to those found for the cubic case: the
matriz M ′

1 is identical to the matrix M1 provided we re-
place the piezoelectric term p1 by p′1 = ex5/C44, whereas
the matrix N ′

1 is given by:

N ′
1 =

⎛
⎜⎝

1 1 0 0
k(1 + p′1) −k(1 + p′1) iqxp′1 −iqxp′1

p′2 p′2 1 1
0 0 εxx/εs −εxx/εs

⎞
⎟⎠ . (45)

Furthermore, the matrix M ′
2 can be found in the same

way as discussed in the cubic case. The matrix N ′
2 can be

obtained from the matrix N ′
1 by multiplying the first row

by fb = exp(ikdb), the second by f̄b = 1/fb, the third by
fx, and the fourth by f̄x. Besides, p′1 and p′2 are defined
as for p1 and p2, respectively, provided we replace ex4 by
ex5.

It is easy to show that, using equations (41) and (42)
one can find:

|A(n+1)〉 = T |A(n)〉 = exp (iQiL)|A(n)〉, (46)

where in the last step Bloch’s ansatz was used. Here T ,
the so-called transfer matrix, is given by:

T = M−1
2 N2N

−1
1 M1. (47)

Therefore,

[T − exp (iQiL)I]|A(n)〉 = 0, (48)

where I is the identity matrix. Equation (48) is the sec-
ular equation defining the bulk phonon dispersion rela-
tion. Since T is an unimodular matrix (detT = 1), its
eigenvalue should satisfy t1t2t3t4 = 1, i.e., t2 = t−1

1 and
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t4 = t−1
3 . Therefore Bloch’s wavevector should satisfy

exp (iQrL) = tr, r = 1, 2. (49)

If we truncate the superlattice at z = 0 (semi-infinite ge-
ometry), considering vacuum occupying the region z < 0
(stress free interface), straightforward calculation yield the
following dispersion relation for the surface modes:

(T11 + T12 − T21 − T22)(T33 − T44 + T34λ − T43λ
−1)

+ (T41 + T42)[(T13 − T23)λ−1 + (T14 − T24)]
− (T31 + T32)[T13 − T23 + (T14 − T24)λ] = 0. (50)

Here Tij are elements of the transfer matrix T , and

λ = (εvacuum + 1)/(εvacuum − 1). (51)

Now we present some numerical results to characterize
the spectrum of the acoustic phonons (bulk and surface
modes) that can propagate in the Al2O3/GaN periodic
structures described above. The physical parameters used
are:

(i) for GaN [21]: ωLO,E1 = 94.06, ωTO,E1 = 73.22,
and ε∞ = 5.29; [22]: ρ = 6.25, C44 = 1.54, ex4 = 0.73,
and ex5 = 0.49;

(ii) for Al2O3 [23]: ε∞ = 10, ρ = 2.2, C44 = 3.12,

where the frequencies are in units of meV, the elastic terms
in units of 1011 N/m2, the piezoelectric terms in units of
C/m2, and the densities in units of 103 kg/m3. We have
considered the thickness of the Al2O3 (sapphire) layer da

equal to 10 nm, and the ratio da/db = 0.5. For numerical
results, instead of to use the frequency ω, we prefer to re-
place it by the reduced frequency ω/Ω where Ω = vT /da.

The phonon spectra for the periodic superlattices,
are presented in Figure 1, considering the cubic zinc-
blende symmetry (Fig. 1a) and the hexagonal wurtzite
one (Fig. 1b), respectively. In all these spectra the sur-
face modes are represented by the dashed lines, while the
bulk bands are characterized by the shadow areas. For
the cubic case, depicted in Figure 1a, the bulk phonon
spectrum has three well-defined branches in the range
0 < ω/Ω < 3.5, with the surface modes between them.
The highest-frequency surface branch is so closed to the
bulk band that it is not visible in the scale used here.
The second surface mode starts at ω/Ω = 1.5 and then
merges into the bulk band at ω/Ω � 2.2 for qxda � 1.25.
The lowest-frequency surface mode merges from the bulk
band at qxda = 0.25 and then evolves quite apart of the
bulk band. For the hexagonal case, on the other hand,
the bulk spectra has now only two branches in the same
range of frequency 0 < ω/Ω < 3.5, with the surface modes
so closed to the bulk bands that are not visible in the
scale used here. Neglecting the piezoelectric coupling, the
spectra (not shown here), although keeping some quali-
tative resemblance when compared with those shown in
Figure 1, present a less pronounced curvature of the bulk
bands (they are quite flat), leading to a smaller gap be-
tween them.

Fig. 1. Acoustic phonon’s spectra for a periodic GaN/sapphire
superlattice, measured by the reduced frequency ω/Ω, as a
function of the dimensionless factor qxda. Here the bulk bands
are represented by the shadow areas, while the dashed lines
defines the surface modes. (a) cubic zinc-blende symmetry; (b)
hexagonal wurtzite symmetry.

We now turn our attention to the quasiperiodic struc-
tures. In order to construct them, we define briefly here
the rules of the unit cell growth, that consists of a
sequence of building blocks (or layers), where the ar-
rangement of the layers follows the desired sequence.
For the well-known Fibonacci (FB) sequence, the rule is
Sn = Sn−1Sn−2, n > 2, where S1 = A, S2 = AB. The
FB rule is invariant under the transformation A → AB
and B → A. Here A means the sapphire layer, while B
represents the GaN one. These inflation rules can also be
understood as an invariance condition, because they leave
their respective sequences invariant when applied.

The Fibonacci generations are:

S0 = [B]; S1 = [A]; S2 = [AB]; , S3 = [ABA] etc. (52)

The number of the building blocks increases according
to the Fibonacci number, Fl = Fl−1 + Fl−2 (with F0 =
F1 = 1), and the ratio between the number of the build-
ing blocks A and the number of the building blocks B
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Fig. 2. Same as in Figure 1 but for the 4th generation
Fibonacci quasiperiodic superlattice.

in the sequence is equal to the golden mean number
τ = (1/2)(1 +

√
5).

To determine the phonon dispersion relation for the
quasiperiodic FB structure we can use equations (48)
and (50) with the appropriated transfer matrices, which
for the zinc-blend cubic structure are given by:

(a) for S0 = [B] or S1 = [A]

TS0 = N−1
2 M2; TS1 = N−1

1 M1; (53)

(b) for S2 = [AB]

TS2 = N−1
1 M2N

−1
2 M1; (54)

(c) for any higher generation (k ≥ 1)

TSk+2 = TSk
TSk+1 ; (55)

with a similar expression for the hexagonal wurtzite struc-
ture, provided we replace all cubic M ’s and N ’s matri-
ces by their hexagonal counterparts. Therefore, from the
knowledge of the transfer matrices TS0 , TS1 , and TS2 we
can determine the transfer matrix of any FB generation.

The phonon spectra for the quasiperiodic Fibonacci
superlattices, considering its 4th generation number
(N = 4), are presented in Figure 2, for the cubic zinc-
blende symmetry (Fig. 2a) and the hexagonal wurtzite one
(Fig. 2b), respectively, using the same physical parameters
as for the periodic case. As in Figure 1, the surface modes
are represented by the dashed lines, while the bulk bands
are characterized by the shadow areas. For the cubic case,
depicted in Figure 2a, the bulk phonon spectrum has six
well-defined branches in the range 0 < ω/Ω < 3.5, with
the surface modes between them. This mean that one im-
portant effect of the quasiperiodicity was to split out the
original three bulk branches found for the periodic case,
and indeed in general, this behavior is found when the Fi-
bonacci’s generation number increases. A similar behavior
was found also for the hexagonal wurtzite symmetry de-
picted in Figure 2b. Furthermore, the quasiperiodic spec-
tra are more sensitive to the piezoelectric effect. Neglect-
ing it, the spectra (not shown here), when compared to
those shown in Figure 2, besides presenting a less pro-
nounced curvature of the bulk bands, leading to a smaller
gap between them (as in the periodic case), have a slight
different number of bulk bands (and therefore changing
also the number of surface modes which lie between them).

4 Localization profiles

One of the most fascinating aspects of excitations in
quasiperiodic structures concerns their localizations and
connections with fractal behavior. Keeping this in mind,
we now proceed with an analysis of the acoustic phonon’s
confinement effects arising from competition between
the long-range aperiodic order, which is induced by the
quasiperiodic structure, and the short-range disorder,
whose importance depends critically on the total length
of the structure. To this end, a quantitative analysis will
be made for the localization and magnitude of the allowed
phonon’s energy bandwidth in the phonon spectra, which
were described in the previous section for the Fibonacci
quasiperiodic structure. Also we shall discuss the related
scaling behavior as a function of the number of generations
of the sequences.

Taking the Fibonacci case, data for the distribution of
the phonon’s energy bandwidths measured as the reduced
frequency ω/Ω are shown in Figure 3 for the dimensionless
in-plane wavevector qxda = 1, considering both symme-
tries (cubic, depicted in Fig. 3a, and hexagonal, shown in
Fig. 3b). One can deduce the forbidden and allowed energy
bands as a function of the generation number N up to the
6th generation of the Fibonacci sequence. We note that, as
expected, the allowed band regions exhibit a fragmented
energy spectrum for large N, as an indication of greater
localization of the modes. In fact, the total width ∆ of the
allowed energy regions (which is known as the Lebesgue
measure of the energy spectrum) decreases with N as the
power law ∆ ∼ F−δ

N . Here FN is the Fibonacci number and
the exponent δ (the the so-called diffusion constant of the
spectra) is a function of the common in-plane wavevector
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Fig. 3. The distribution of the acoustic phonon’s energy band-
widths as a function of the quasiperiodic Fibonacci generation
number N , considering the dimensionless in-plane wavevector
qxda = 1.0. (a) cubic zinc-blende symmetry; (b) hexagonal
wurtzite symmetry.

qxda. This exponent can be considered as indicating the
degree of localization of the excitation [24]. In Figure 4 we
show a log-log plot of these power laws for three different
values of qxda (see the inset).

Have already proved that the acoustic phonon’s energy
spectra bandwidth in a Fibonacci quasiperiodic superlat-
tice obey a linear scale law, which is a typical signature
of a monofractal system (for details see Refs. [5,6]), let us
analyze now its multifractal profile characterized by their
f(α) spectrum. In this context, the study of the f(α) func-
tion is very important: it describes the distribution of dif-
ferent fractal dimensions of the object upon variation of
the singularities of strength α [25].

A traditional method employed to determine the mul-
tifractal spectra, consists in defining a set of generalized
dimensions Dg, whose associated spectrum of singularities

Fig. 4. Localization and scaling properties of the acoustic-
phonon modes in the Fibonacci quasiperiodic structure, con-
sidering N = 2, 3, 4, 5 and 6. We have plotted Log(∆)
against Log(FN ) for several values of the in-plane dimension-
less wavevector qxda (see the legends, with δ indicating the
slope of the curves). (a) Cubic zinc-blende symmetry; (b)
hexagonal wurtzite symmetry.

f(α) is obtained through a Legendre transform [26]. Both
of these quantities can be used to determine the whole
spectra (for details see Ref. [27]). The difficulty of this
method lies on the Legendre transform itself, depending
on the system considered, and on eventual discontinuities
that can arise on the f(α) curves [28].

A different approach for this problem, used in the
present work, is based on some relationships between ther-
modynamic and multifractal formalisms [29], and was in-
troduced by Chhabra and Jensen [30]. In this approach
we first define our measure, namely the normalized local
allowed bandwidth (∆i), i.e.

χi =
∆i∑
i ∆i

. (56)
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Fig. 5. The f(α) functions for the acoustic phonon’s energy
bandwidths, considering the 8th Fibonacci generation number
and arbitrary values of the dimensionless in-plane wavevector
qxda. (a) Cubic zinc-blende symmetry; (b) hexagonal wurtzite
symmetry.

The next step is to construct a parameterized family of
these normalized measures:

νi(g) =
χg

i∑
i χg

i

, (57)

which are generalizations of the original measures χi. The
multifractal spectrum f(α) is then obtained by varying
the parameter g in equation (57) and calculating

f(αg) = lim
N→∞

[
−

∑
i νi ln νi

ln N

]
, (58)

αg = lim
N→∞

[
−

∑
i νi ln χi

ln N

]
. (59)

In Figure 5 we show the f(α) functions for the 8th gener-
ation of the FB sequence, considering three different arbi-
trary values of the dimensionless in-plane wavevector qxda,
namely qxda = 0.2, 0.4 and 0.6. For the cubic zinc-blende
symmetry, one can notice that, differently from the multi-
fractal Fibonacci spectra of magnetostatic modes [31], the

curves are qualitatively insensitive for the dimensionless
in-plane wavevector qxda. The narrowing or the broaden-
ing of the curves are quantified by the multifractal strength
of the system, which in turn is determined by the slope of
each of the curves, given by the g exponents [26]. Quite
different, for the hexagonal wurtzite symmetry, the curves
are dependent to the dimensionless in-plane wavevector
qxda, mainly when qxda = 0.6 onward.

For all cases the lower bound αmin and the upper
bound αmax of the abscissa in the f(α) curves represent
the minimum and maximum of the singularity exponent
α, which acts as an appropriate weight in the recipro-
cal space. In fact, αmin and αmax characterize the scal-
ing properties of the most concentrated and most rari-
fied region of the intensity measure, respectively [30]. The
value of ∆α ≡ (αmax − αmin) may be used as a param-
eter reflecting the randomness of the intensity measure,
being bigger for the hexagonal wurtzite structure. Be-
sides, the above multifractal analysis revealed a smooth
f(α) function distributed in a finite range [αmin, αmax]
for both structures, with a summit at f(α0) = 1, indicat-
ing that the phonon spectra discussed here correspond to
highly nonuniform intensity distributions, and therefore
they possess the scaling properties of a multifractal.

In summary, we have described the spectra, localiza-
tion and multifractal behavior for acoustic phonons prop-
agating in periodic and quasiperiodic (Fibonacci type)
semiconductor superlattices using a theoretical model be-
yond the elastic continuum approach. We have considered
stacking of wurtzite and cubic semiconductor structures
of GaN types surrounded by sapphire layers. The most
important experimental technique used to probe these
phonon modes is the Brillouin light scattering, and indeed
it was previously been successfully applied for high-quality
free-standing GaN substrate [32] as well as GaN thin film
on sapphire substrate [33].
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